Multi-Source Sensor Fusion for Small Unmanned Aircraft Systems Using Fuzzy Logic

Brandon Cook

NASA Ames Research Center & University of Cincinnati

Dr. Kelly Cohen University of Cincinnati

Motivation

- As small Unmanned Aircraft System (sUAS) applications proliferate we will see an increase in airspace congestion
- Must accurately estimate sUAS locations
 - Can move/maneuver quickly
 - Vulnerable to wind gusts
 - Operate beyond visual lineof-sight (BVLOS)
 - Identify/track rogue or nonconformant vehicles

http://www.profitguide.com/industry-focus/technology/iscanada-ready-for-drones-70777

Given multiple sensor readings, which should we trust?

Outline

- Research Objectives
- Proposed Solution
- Testing Environment
- Results
- Conclusions
- Future Work

Research Objectives

- Develop a sensor fusion system using Fuzzy Logic and Maximum a Posteriori (MAP) estimations
 - Adaptive to available sensor types
 - Adaptive to sensor performance
- Test system using various sensor type combinations (GPS, Radar, and Onboard)
- Improve sUAS location estimation when compared to raw measurement values

Approach

- Find MAP estimation for each vehicle for each sensor type
- 2. Parse 3-dimensional values into lateral and vertical planes
- Use Fuzzy Inference System (FIS) to determine sensor type confidence for each plane
- 4. Calculate final position estimate using weighted average

Fuzzy Inference Systems

- 3 FISs developed for sensor type combinations:
 - Radar and GPS
 - Radar and Onboard
 - Radar, Onboard, and GPS
- FISs calculate each sensor's confidence in both lateral and vertical planes
- Single-input-four-output structure
 - Normalized inputs and outputs

FIS Structure

FIS Example Rule Base

	Input	Outputs				
		Lateral		Vertical		
Rule#	Distance	GPS	Radar	GPS	Radar	
1	Close	Low	High	Low	High	
2	Med	Med	Med	Med	Med	
3	Far	High	Low	High	Low	

FIS Example Membership Functions

Testing Environment

# Radars	# UAS	# Cases	Onboard	GPS On?
	1	15	No	Yes
2	2	5	Yes	Yes/No
	3	5	Yes	Yes/No
	4	5	Yes	Yes/No
	1	15	No	Yes
3	2	5	Yes	Yes/No
3	3	5	Yes	Yes/No
	4	5	Yes	Yes/No
	1	15	No	Yes
4	2	5	Yes	Yes/No
4	3	5	Yes	Yes/No
	4	5	Yes	Yes/No

- 135 tested cases
- 1,000 independent measurements from each sensor for each case
- Raw measurement values passed through sensor fusion system
- Error between true and estimated vehicle location was recorded

Sample Scenario

Radar - Lateral Plane

Results

Conclusions

- Demonstrated a novel approach to estimate the location of an sUAS using Fuzzy Logic
- Fusion system estimates were more accurate than raw or MAP estimates
- Can apply proposed system to any sensor type with variable reliability and performance

Future Work

- Train each FIS using advanced techniques
- Incorporate sensor fusion system into a vehicle tracker
 - Data association:
 Which data belongs to which vehicles
 - Data filtering:
 Exclude bad data points
 - State estimation:
 Speed and heading
 - Future state estimation:
 Predict vehicle location at future times

Questions?

Brandon Cook

Email: brandon.cook@nasa.gov